138
Bioremediation for Sustainable Environmental Cleanup
Bandhyopadhyay, K., D. Das and B. R. Maiti. 1999. Solid matrix characterization of immobilized Pseudomonas
putida MTCC 1194 used for phenol degradation. Appl. Microbiol. Biotechnol. 51(6): 891–895.
Bang, S. W. 1997. Molecular analysis of p-nitrophenol degradation by Pseudomonas sp. strain ENV2030. Ph.D.
Thesis, Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey.
Barker, J. L. and J. W. Frost. 2001. Microbial synthesis of p‐hydroxybenzoic acid from glucose. Biotechnol. Bioeng.
76(4): 376–390.
Bhushan, B., A. Chauhan, S. K. Samanta and R. K. Jain. 2000. Kinetics of biodegradation of p-nitrophenol by
different bacteria. Biochem. Biophys. Res. Commun. 274(3): 626–630.
Bigley, A. N. and F. M. Raushel. 2013. Catalytic mechanisms for phosphotriesterases. Biochim.
Biophys. Acta Proteins Proteom. 1834(1): 443–453.
Biot-Pelletier, D. and V. J. Martin. 2014. Evolutionary engineering by genome shuffling. Appl. Microbiol. Biotechnol.
98(9): 3877–3887.
Bojanovič, K., I. D’Arrigo and K. S. Long. 2017. Global transcriptional responses to osmotic. Appl. Environ.
Microbiol. 83(7): e03236–16.
Brämer, C. O. and A. Steinbüchel. 2001. The methylcitric acid pathway in Ralstonia eutropha: new genes identified
involved in propionate metabolism The GenBank accession numbers for the nucleotide sequences of the prp
gene cluster are AF325554 and AF331923. Microbiol. 147(8): 2203–2214.
Bueno, M., M. F. Fillat, R. J. Strasser, R. Maldonado-Rodriguez, N. Marina, H. Smienk, C. Gómez-Moreno and
F. Barja. 2004. Effects of lindane on the photosynthetic apparatus of the Cyanobacterium anabaena. Environ.
Sci. Pollut. Res. Int. 11(2): 98–106.
Bujdoš, D., B. Popelářová, D. C. Volke, P. I. Nikel, N. Sonnenschein and P. Dvořák. 2023. Engineering of
Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of
pyruvate explained by an upgraded metabolic model. Metabolic Eng. 75: 29–46.
Caldwell, B. J. and C. E. Bell. 2019. Structure and mechanism of the Red recombination system of bacteriophage λ.
Prog. Biophys. Mol. Biol. 147: 33–46.
Carvalho, F. D., I. Machado, M. S. Martínez, A. Soares and L. Guilhermino. 2003. Use of atropine-treated Daphnia
magna survival for detection of environmental contamination by acetylcholinesterase inhibitors. Ecotoxicol
Environ Saf. 54(1): 43–46.
Cha, D., H. S. Ha and S. K. Lee. 2020. Metabolic engineering of Pseudomonas putida for the production of various
types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresour. Technol. 309: 123332.
Chagué, V., Y. Elad, R. Barakat, P. Tudzynski and A. Sharon. 2002. Ethylene biosynthesis in Botrytis cinerea. FEMS
Microbiol. Ecol. 40(2): 143–149.
Chaudhry, G. R., A. N. Ali and W. B. Wheeler. 1988. Isolation of a methyl parathion-degrading Pseudomonas sp.
that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl. Environ. Microbiol. 54(2):
288–93.
Chaurasia, A. K., T. K. Adhya and S. K. Apte. 2013. Engineering bacteria for bioremediation of persistent
organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour. Technol. 149: 439–445.
Chavarría, M., P. I. Nikel, D. Pérez-Pantoja and V. de Lorenzo. 2013. The Entner–doudoroff pathway empowers
Pseudomonas putida KT 2440 with a high tolerance to oxidative stress. Environ. Microbiol. 15(6): 1772–1785.
Chen, S., Y. H. Dong, C. Chang, Y. Deng, X. F. Zhang, G. Zhong, H. Song, M. Hu and L. H. Zhang. 2013.
Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical
degradation pathway. Bioresour. Technol. 132: 16–23.
Cook, A. M. and R. Huetter. 1981. s-Triazines as nitrogen sources for bacteria. J. Agric. Food Chem. 29(6): 1135–
1143.
Cuenca, M. D. S., C. Molina-Santiago, M. R. Gómez-García and J. L. Ramos. 2016. A Pseudomonas putida double
mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production
platform. FEMS Microbiol. Lett. 363(5): fnw018.
Cullington, J. E. and A. Walker. 1999. Rapid biodegradation of diuron and other phenylurea herbicides by a soil
bacterium. Soil Biol. Biochem. 31(5): 677–686.
Dai, M. and S. D. Copley. 2004. Genome shuffling improves degradation of the anthropogenic pesticide
pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl. Environ. Microbiol. 70(4): 2391–
2397.
DeFrank, J. J. 1991. Organophosphorus cholinesterase inhibitors: detoxification by microbial enzymes. Applications
of Enzyme Biotechnology. Springer, Boston, MA.
Dejonghe, W., J. Goris, S. El-Fantroussi, M. Höfte, P. DeVos, W. Verstraete and E. M. Top. 2000. Effect of
dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on
bacterial community structure in two different soil horizons. Appl. Environ. Microbiol. 66(8): 3297–3304.